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Abstract: With the significant increase of life expectancy of populations in societies today, the importance of the 

discovery of drugs associated with neurodegenerative diseases has emerged. Therefore, neurodegenerative diseases are an 

important topic in Medicinal Chemistry. Although drug discovery is considered a complex and slow process, new 

approaches and methods have been developed with the intention of finding new chemical entities in more efficient ways. 

This work provides a review of virtual methodologies applied in drug discovery and especially a new model for the 

prediction of MAO-A inhibitors using a multi-target QSAR methodology. This model involves a mixed approach 

containing simple descriptors based on atom-centered fragments and functional groups (DRAGON) and topological 

substructural molecular design descriptors (MODESLAB). This unified multi-species QSAR model was validated through 

a virtual screening of a new series of oxoisoaporphine derivatives, taking into account the information in the calculated 

fragmental contributions. Therefore, this method represents a useful tool for the in silico screening of MAO-A inhibitors.  
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INTRODUCTION 

 Monoamine oxidase (MAO) is an enzyme bound to the 

outer mitochondrial membrane that contains flavin adenine 
dinucleotide (FAD) as a coenzyme. This enzyme has 

considerable physiological and pharmacological interest 

because it is implicated in the metabolism (oxidative 
deamination) of endogenous monoamine neurotransmitters 

[1] and several exogenous primary, secondary, and tertiary 

amines [2-5]. Two isoforms, namely MAO-A and MAO-B, 
have been identified based on their aminoacid sequences, 

three-dimensional structure, substrate preference, and 

inhibitor selectivity [6-11].  

 All of these findings determine the clinical importance of 

MAO inhibitors. Therefore, since major depression is 

basically related to the deficit of norepinephrine and 5-HT at 
critical synapses in the central nervous system (CNS), 

selective MAO-A inhibitors, e.g., clorgyline (irreversible) 

and moclobemide (reversible) are useful solutions in the 
treatment of the above-mentioned neurological disorder  

[12-17].  
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 By contrast, selective and irreversible MAO-B inhibitors 
(e.g., R-(-)-deprenyl (selegiline) and rasagiline) are useful in 
the treatment of Parkinson’s and Alzheimer’s diseases either 
alone or in combination with L-DOPA, since the first 
neurodegenerative pathology is mainly due to a deficit of 
dopamine in the midbrain (corpus striatum) [14, 18-26].  

 In the 1950s, the discovery of the antidepressant 
properties of MAOIs was a major finding in the monoamine 
theory of depression. However, earlier MAOIs introduced 
into clinical practice were abandoned due to adverse effects 
such as hepatotoxicity, orthostatic hypotension, and the so-
called “cheese effect”, which was characterized by 
hypertensive crisis. These drawbacks were thought to be 
related to nonselective and irreversible enzyme inhibition 
[15, 17].  

 Several attempts to perform rational design of new 
inhibitors have been described by means of theoretical 
calculations, beginning with the crystalline structure of 
MAO-A [27,28]. Previous studies have explained some 
responsible factors for the selectivity of the above-mentioned 
compounds on the human monoamino oxidase A (hMAO-A) 
isoform. Some examples are the presence of electron-rich 
aromatic moieties [29]

 
and the role that some amino acid 

residues (i.e., Ile335) play in the active sites [27]. 
 

 Aporphinoid alkaloids are the active principles of a wide 
range of medicinal plants used for therapeutic purposes in 
oriental folk medicine. In previous studies, it has been 
described that some of these natural compounds with the 
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aporphine skeleton display interesting pharmacological 
activity. The effectiveness and high selectivity as hMAO-A 
inhibitors of pyrrolyl-ethanolamine derivatives [30], 
pyrrolyl-oxazolidinones [31], -alkyl-phenylethylamines 
[32],

 
and quinoxaline derivatives [33] has been 

demonstrated. Nevertheless, a small group of little 
investigated isoquinoline alkaloids has been collected in 
Kyoto, Japan, and later in China. Their natural source resides 
in the creepers of the Menispermum dauricum DC 
(Menispermaceae) [34]. Several publications [35-41] have 
reported the isolation of seven new yellow-colored 
isoquinoline alkaloids.  

 The synthesis and chemical reactivity of these 
heterocycles have been studied using 2,3-dihydro- and 
oxoisoaporphine derivatives [42] by means of oxidizer 
agents and the use of metal and hydrogenation catalysis, 
unexpectedly affording some interesting analogues with the 
partial or complete reduction of the aromatic rings, lack of 
substituents, and a concomitant enolization of the carbonyl 
group [43].  

 A broad consensus exists concerning the necessity of 
searching for novel MAOIs and the study of MAOs 
mechanism of action [9, 44]. In any case, despite 
considerable progress in understanding the interactions of 
both enzyme isoforms with their preferred substrates and 
inhibitors, few general parameters are available for the 
rational design of potent and selective inhibitors [45, 46].  

 Bearing in mind all of these considerations and, as the 
aporphine derivatives exhibit a number of interesting 
biological effects, we consider that oxoisoaporphines may be 
promising lead compounds for developing new and effective 
MAOIs. Therefore, these compounds are an interesting 
family to study in a multi-target QSAR model.  

 Consequently, computational approaches are important 
tools in an efficient search for new inhibitors. Although a 
number of reports have been published on the quantitative 
structure-activity relationships (QSAR) for MAOIs, in 
general, these are restricted to the study of congeneric 
families of compounds [47-53].  

 In the past 15 years, new approaches considered to be a 
part of ligand-based drug design have emerged as powerful 
tools for the design of new pharmacological agents. 
Therefore, massive screenings of databases of heterogeneous 
series of compounds have been rapidly developed with the 
aim of extracting maximum structural information at 
different levels of chemical complexity and diversity, 
supported by computer-aided drug design methods [54]. In 
this sense, some promising methodologies based on graph-
theoretical descriptors have been developed and applied in 
the design of compounds with different biological activities 
[55, 56].  

 Many studies that employ graph-theoretical approaches 
have been reported regarding the design of new drugs, the 
modeling of toxicities, and in general, the search for common 
structural or substructural patterns of known drugs [57-64]. 
Other descriptors such as the indicator variables in the Free-
Wilson analysis have also been used for modeling some 
pharmacological activities [65]. These variables are based on 

fragment contribution approaches and they have proved to be 
very useful in combination with other descriptors [66, 67]. 

 Almost all QSAR techniques are based on the use of 
molecular descriptors which are numerical series that codify 
useful chemical information and enable correlations between 
statistical and biological properties [68-71]. The principal 
deficiency in the use of some molecular indices concerns 
their lack of physical meaning. Regarding this limitation, the 
introduction of novel molecular indices must obey 
physicochemical laws in order to ensure a theoretically 
rigorous interpretation of the results [69].  

 The development of rational approaches for the discovery 
of MAO-A selective inhibitory drugs is of great interest. The 
combination of methodologies based on virtual screening 
(applying graph-theoretical descriptors) with the structure-
based drug design methods would be ideal for the 
development of new MAO-A inhibitor agents. This 
combined study would be perfect taking into consideration 
the different mechanisms of action, i.e., to find a relationship 
between the ability of a given compound to inhibit more than 
one biological receptor. 

 More than 3000 compounds have been reported as 
potential MAOIs in the past years [72]. However, the 
massive screening of compounds as possible MAO 
inhibitory agents is not yet sufficiently explored. As the ideal 
drug candidate has not been attained, an intensive search for 
new and innovative MAOIs is still needed. Only two studies 
using graph-theoretical approaches have been conducted in 
this area [51, 52], one of them published by some of the co-
authors of the present paper. 

MOLECULAR DESCRIPTORS 

Fragment Descriptors 

 In a previous publication [73], we pointed out that the 
molecular descriptors based on fragments are focused on 
obtaining information concerning which fragments have 
positive (favourable) contributions and which have negative 
(undesirable) contributions on the activity. This allows 
redirecting the design of bioactive compounds in order to 
minimize the number of fragments with negative 
contributions and maximize the number of fragments with 
positive contributions. 

Atom-Centered Fragments 

 Atom-centered fragments have been demonstrated to be 
useful molecular descriptors and have been employed in 
some QSAR studies [74, 75], providing important 
information about the hydrophobic and dispersive 
interactions that are involved in processes such as transport 
and distribution of the drug through the membrane as well as 
drug–receptor interactions. For these reasons, these descriptors 
could give an idea of the energetic outgo of this process in 
terms of free energy [74]. This is an essential thermodynamic 
property that provides a clear understanding about the nature 
of the entire process of drug (ligand)–receptor interaction 
[76, 77]. Atom-centered fragments are simple molecular 
descriptors defined as the number of specific atom types in a 
molecule. They are calculated from molecular composition 
and atom bonds. Each type of atom in the molecule is 
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described taking into account its neighbouring atoms. 
Hydrogen and halogen atoms are classified by the 
hybridization and oxidation state of the carbon atom to which 
they are bound; heteroatoms attached to a carbon atom in -
position are further considered. Carbon atoms are classified 
by their hybridization state and whether their neighbours are 
carbon or heteroatoms [74, 75]. Considering that these 
descriptors depend on their atom bonds for their definition, 
we can say that the presence of an atom defines the presence 
of a fragment. 

Functional Groups Count 

 Another type of descriptor expresses certain fragmental 
features. These are simple molecular descriptors defined as 
the number of specific functional groups in a molecule and 
are also calculated from the molecular composition and atom 
bonds. The functional groups defined by these descriptors 
are those traditionally used in Organic Chemistry. Both 
atom-centered fragment and functional group count are 
descriptors that are related with indicator variables in a Free-
Wilson analysis. 

Spectral Moments of the Bond Adjacency Matrix 

 The approach that encompasses the calculation of the 
spectral moments of the bond adjacency matrix is known as 
the TOPS-MODE (TOPological Substructural MOlecular 
DEsign) approach. It has been applied for the description of 
some physicochemical properties of organic compounds 
[78-80] in quantitative structure-toxicity relationship 
(QSTR) [81, 82]. It has also been utilized for the modeling 
of pharmacological activities [83-86]. Some ideas in spectral 
moments have been generalized and extended to 
biomolecules by Estrada [87-90]. The theoretical 
background of the spectral moments of bond adjacency 
matrix has been described in many articles [78-84]. In order 
to codify information concerning heteroatoms, the TOPS-
MODE approach uses B(Wii) weighted matrices instead of 
B. The weights (Wii) are chemically meaningful numbers 
such as bond distances, bond dipoles, bond polarizabilities, 
or mathematical expressions involving atomic weights [91, 
92]. Weights are introduced in the main diagonal of matrix 
B(Wii). Then, the spectral moments of this matrix can be used 
as molecular fingerprints in QSAR studies for the 
codification of molecular structures. By mathematical 
definition, the term spectral moments must be understood as 
the sum of the elements (eii) in the natural powers of B(Wii). 
As such, the spectral moment of order k (μk) is the sum of 
the main diagonal elements (eii) of matrix B(Wii). The total 
spectral moments of the bond matrix [89-91] are defined as: 

μk = Tr Bk( ) = eii( )
i=1

s

k

           (1) 

where Tr represents the trace of the matrix that is the sum of 
the diagonal entries of the matrix and the elements (eii)k are 
the diagonal entries of the kth power of the bond matrix. 
Local spectral moments [87] are defined as the sum of the 
diagonal entries of different powers of the bond matrix 
corresponding to a given molecular fragment, using a similar 
expression: 

μk f( ) = eii( )
i=1

f

k

             (2) 

where f is the corresponding fragment for which the spectral 
is defined and the sum is carried out over all bonds that form 
the fragment, f .  

 The simplest case is when f corresponds to a single bond 
in which case the kth local moment is defined as the diagonal 
entry that belongs to this bond in the matrix, raised to the kth 
power. The spectral moments of the bond matrix have a 
topological nature (they are 2D descriptors). However, their 
principal advantage is that they make it possible to calculate 
the relative contribution of the fragments to a desired 
activity [71-84] because they can be expressed as linear 
combinations of the number of times that a fragment 
appears in the molecules. Another advantage of spectral 
moments of the bond matrix is that they can reasonably 
explain a considerable part of spatial phenomena [93, 94] 
which is a particular characteristic of 3D descriptors. 

MULTI-TARGET QSAR METHODOLOGY IN DRUG 
DESIGN 

 New graph-theoretical 2D and 3D descriptors have been 
developed and and they are proving to be promising tools for 
the modeling of biological activities. Thus, stochastic and 
nonstochastic descriptors have been employed for the 
modeling of antitrypanosomal and antimalarial activities 
[95]. Markov chain invariants for simulation and design 
(MARCH-INSIDE) can be considered another promising 
approach in drug design and it has been extended to 
bioinformatics [96-98]. At the same time, another powerful 
tool has emerged: multi-target QSAR methodology. 

 This methodology was first applied by González-Díaz 
and co-workers in order to obtain unified models for the 
design and prediction of compounds with antimicrobial 
activity against several pathogen agents [99-102]. Using this 
methodology, atomic average properties were introduced as 
characteristics of a given group of compounds tested (being 
active) against a specific pathogen agent, as weighted in the 
topological (MARCH-INSIDE) descriptors. For this reason, 
the newly constructed descriptors were tested for 
differentiating the species of pathogen agents against a given 
compound. Those are called multi-target descriptors. 

 Later, the same author improved and extended the same 
methodology to the study of proteins in microbial agents 
[103], calculating the original descriptor of each protein (that 
only depends on the molecular structure of each protein) and 
then calculating the average of each original descriptor of the 
proteins with the same enzymatic activity, constituting in 
that way, the first set of multi-target descriptors. Finally, the 
second set of multi-target descriptors was created and the 
difference between the original descriptors corresponding to 
each protein and the average descriptor corresponding to 
each group of protein with the same activity was determined. 
The second set of multi-target descriptors represents the 
deviation from the average multi-target descriptors. 

 Another advantage of multi-target QSAR methodologies 
is that they have proved to be very useful in combination 
with complex networks [102, 103], being high power tools 
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for the analysis of different phenomena [104]. In this study, 
we used the multi-target QSAR methodology reported in 
reference [103] to calculate multi-target descriptors from 
spectral moments of the bond adjacency matrix, taking into 
account that this methodology can be applied to almost all 
classes of descriptors. In this specific case, we gave the 
name, multi-species descriptors, to those descriptors used for 
the prediction of MAO-A inhibitory activity through the 
inhibition of the enzyme in different species. 

IN SILICO EVALUATION OF NOVEL MAO-A 

INHIBITORS  

 As previously described, a specific QSAR methodology 
expected to lead to new discoveries involves several general 
common steps [51]: (a) construction of a suitable molecular 
database of compounds (with or without MAO-A inhibitory 
activity), (b) calculation of the molecular descriptors, (c) 
construction of the model, (d) estimation of the biological 
activity using QSAR, (e) synthesis and characterization of 
selected compounds, and (f) testing of the candidate 
compounds in order to corroborate the predicted biological 
activity. As mentioned above, the aporphine analogues are a 
family of natural and/or synthetic compounds with different 
pharmacological activities, including MAO inhibitory 
activity. They have shown their effectiveness and high 
selectivity as hMAO-A inhibitors [30-37, 39-43]. In many 
cases, it is known that activity and selectivity are determined 
and modulated by the nature of the substituents in the 
scaffold. 

 Based on the above information, and considering our 
experience in this family of compounds, we designed and 
calculated the molecular descriptors for new aporphine 
analogues. The model developed in this study was created 
for the identification of novel MAO-A inhibitors. 

UNIFIED MULTI-TARGET QSAR MODEL FOR 

MAO-A INHIBITORS 

 In the last years, Linear Discriminant Analysis (LDA) 
[105, 106] has been one of the most common statistical 
techniques in many QSAR studies: [83-85, 99, 101-105]  

A MTmao-a = a0 + a1D1 + ... + akDk               (3) 

 In the above equation, A MTmao-a (multi-target MAO-A 
inhibitor activity due to the inhibition of enzymatic activity) 
is a dummy indicator variable, having values of 1 (active 
compounds) or -1 (inactive ones). The ak terms are the 
coefficients in the discriminant function and the Dk terms are 
the descriptors. The discriminant function was obtained by 
employing the LDA modules of STATISTICA 6.0 
(http://www.statsoft.com). The default parameters of this 
program were used in the development of the model. The 
variables included in the equations were selected using a 
forward stepwise procedure as the variable selection strategy. 
The selection was subjected to the principle of parsimony. 
Then, the function with high statistical significance, but as 
few parameters as possible, was chosen. 

 The statistical quality of a model can be determined by 
examining some statistical indices such as the Wilks' lambda 
( ), the square of t h e  Mahalanobis distance (D

2
), the F 

ratio, the corresponding p-level, the percentage of 

classification inside each group (for each case), and the 
proportion between cases and variables. The Wilks  i s  a 
multivariate measure of group differences over several 
variables, having values in the range from 0 (perfect 
discrimination) to 1 (no discrimination). The D

2 statistic 
indicates the separation between two groups, demonstrating 
if the model has an appropriate discriminatory power for the 
differentiation of those groups. In the case of probabilities 
for the classification of each compound/species, they were 
considered as unclassified by the model when the difference 
between probabilities to be active and to be inactive was less 
than 5%. Another important aspect is that the compounds 
used in the external prediction set were never used to develop 
the discrimination function. 

 On the other hand, to confirm the quality of a model and 
to validate it, some statistical indices such as sensitivity 
(sens), the ability to classify active cases, specificity (spec) 
or the ability to classify inactive cases, accuracy (acc), and 
overall predictability were calculated. These parameters were 
determined according to the following equations: 

Sens = (TP/C
+
) . 100 %            (4) 

Spec = (TN/C
-
) . 100 %            (5) 

Acc = (TP + TN)/[(C
+
) + (C

-
)] . 100 %          (6) 

where TP represents the cases (compounds) correctly 
classified by the model as active, C+ signifies the total of 
correctly classified active compounds, TN indicates the cases 
correctly classified by the model as inactive, C- represents 
the total inactive compounds, FP are the false positives, and 
FN are the false negatives. 

 In the present approach, the development of a 
discriminant function [107] that classifies organic 
compounds as active or inactive is the key step for the 
discovery of MAO-A inhibitors. Therefore, it was necessary 
to select a training data set of MAO-A inhibitors containing 
wide structural variability. 

PRELIMINARY RESULTS IN THE DEVELOPMENT 

OF A MAO-A MODEL SUITABLE FOR VIRTUAL 

SCREENING 

 The data set [51, 52, 72] was formed by 2,246 different 
compounds. Not all the compounds found in the literature 
were tested against the MAO-A enzymes of the four studied 
species (Bos taurus, Mus musculus, Rattus norvegicus or 
Homo sapiens). We were able to collect 2,246 cases between 
active and inactive (2,246 combinations of 
compound/species) instead of 4 x 1,000 cases. According to 
the previous criteria, 590 of 2,246 cases were considered to 
be active. In order to perform a rigorous, rapid, and rational 
design, the compounds were chosen according to the 
following biochemical criteria: the compounds chosen as 
active had IC50  25 M, taking into consideration that some 
MAO-A inhibitor drugs such as clorgyline and rasagiline 
had IC50 smaller than this value for more than one species. 
IC50 is the half maximal inhibitory concentration and it is a 
measure of the effectiveness of a compound in inhibiting the 
MAO-A inhibitor activity. This quantitative measure 
indicates how much of a particular drug is needed to inhibit a 
given biological process by half. It is important to point out 
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that the compounds chosen as active had to comply with this 
condition. Then, if the criteria failed, the compound was 
considered to be inactive. 

 The atom-centered fragment and functional group count 
descriptors were calculated using DRAGON 5.3 
(www.talete.mi.it/dragon.htm). The spectral moments of the 
weighted bond adjacency matrix were calculated using 
MODESLAB 1.5 software (www.modeslab.com). In this 
case, the spectral moments were weighted by bond dipole 
moments, hydrophobicity, polar surface, and Abraham 
dipolarity/polarizability terms. For these weighted spectral 
moments, we calculated the average spectral moments that 
depend on the group of compounds that were tested, which 
turned out to be active according to our criteria against given 
species and in MAO-A inhibitory activity. This provides 
specificity and differentiation between the distinct species 
and their inhibitors. Also, we calculated the so-called 
difference spectral moment. It is equal to the difference 
between the original and the average spectral moment of 
each molecule. It indicates the deviation of a molecule (in 
structural terms) from the average value to be active, 
depending on both the structure of each molecule and the 
species against each the molecule was tested. 

 QSAR models can be used for various purposes. The 
most important and most used is the prediction of the activity 
of new molecules. However, if the model is used in order to 
design new molecular entities, the descriptors employed to 
construct it should have a meaningful physicochemical 
and/or structural interpretation. Also, each descriptor should 
provide an idea of the physicochemical processes in terms of 
structural features of the molecules. 

 Once the training series had been designed (with a total 
of 443 compounds considered to be active), forward 
stepwise linear discriminant analysis (LDA) was carried out 
in order to derive the multi-species QSAR model for the 
MAO-A inhibitory activity score (inhibitor-MAO-Ai-a-sc): 

MAO Ai a sc = 1.437 nArCO( ) 2.046 nS(= O)2( ) 1.753 C 022( )

3.457 10 15 AVGμ8 (Ato) + 0.279 nArOR( ) + 0.125 C 006( )

+0.178 nCt( ) + 0.210 nROH( ) 0.531 N 073( ) + 0.220 O 057( )

1.529 10 29μ15 (Ato) 2.909 nR = CHX( ) + 0.536 nCONN( )

0.789 nPyrroles( ) 0.207 N 066( ) + 0.587

N = 2246  = 0.573  D2
= 3.902  F 15,  2230( ) = 84.951  p<0.0000001

   (7) 

 In Eq. 7, nARCO
 

represents the number of ketones 
(aromatic); nS(=O)2 corresponds to the number of sulfones; 
C-022 takes into consideration a triple bond or cumulative 
double bond; AVGμ8(Ato) symbolizes the average descriptor 
of the spectral moments of order 8, weighted by the Atomic 
weight term; nROH characterizes the number of aliphatic 
hydroxyl groups; C-006 symbolizes the CH2RX where X 
represents any electronegative atom (O, N, S, P, Se, 
halogens); nCt represents the number of terminal primary 
carbon, C(sp3); nArOR signifies the number of ethers 
(aromatic); N-073 represents the secondary and tertiary 
amine (aromatic) and aromatic single bonds such as the C-N 
bond in pyrrole; O-057 corresponds to phenol, enol, and 
carboxyl OH; μ15(Ato) symbolizes the spectral moments of 
order 15, weighted by the atomic weight term; nR=CHX 

represents the number of R=CHX where X is halogen; 
nCONN corresponds to the number of urea (-thio) 
derivatives; nPyrroles represents the number of pyrroles, and 
N-066 signifies the primary aliphatic amine. 

 In the model represented by Eq. 7, the atom-centered 

fragments and the functional group count descriptors are 

easily interpreted because they indicate certain types of 

group of atoms that form fragments and/or functional 

groups. In this sense, the information provided by these 

descriptors depends clearly on the structure of the fragments 

or functional groups. For this reason, a strong relationship 

will exist with reactivity, i.e., according to its structure, each 

fragment will undergo some reactions such as nucleophilic 

and/or electrophilic addition (described by nArCO, C-022 or 

nR=CHX) or basicity and acidity (described by N-066 and 

O-057), that has only been cited in some cases. However, 

atom-centered fragment and functional group count 

descriptors can provide information about physicochemical 

properties of each specific fragment in particular, such as, 

polarizability, hydrophobicity, atomic weight, and many 

others. The most important element is the contribution to the 

activity associated to these descriptors because the 

contribution is the result of all possible factors which have 

an influence on the structure of the fragment or the 

functional group under study. 

 In the case of the spectral moments of the bond 
adjacency matrix, they provided very important information 
about some structural features related to the drug-biological 
receptor interaction. The descriptors represented by 
AVGμ8(Ato) and μ15(Ato) gave information about the atomic 
weight, related with the molecular size of the molecules. 
These descriptors have a negative magnitude in Eq. 7. This 
indicates that a decrease of the atomic weight, in terms of 
molecular size, will cause an increase of activity. Moreover, 
the descriptor AVGμ8(Ato) has a greater meaning than the 
descriptor μ15(Ato). This implies that the influence of the 
molecular size is greater among the different species than 
within one species, where AVGμ8(Ato) constitutes a multi-
species descriptor. 

 With the descriptors employed, the principal advantage 
of the model obtained by us is that we can calculate the 
relative contribution (for the development of the MAO-A 
activity) of any fragment to the enzymatic inhibition in any 
species. In the first step, all of the substructures (fragments) 
whose contribution we wanted to calculate, were selected. 
The relative contribution of any fragment to the MAO-A 
inhibitory activity was determined by substitution of the 
values of all the descriptors for each substructure in Eq. 7. In 
order to give an idea of the calculation of fragment 
contributions, we represented the fragments that were found 
in compounds that are MAO-A inhibitors. Thus, taking into 
account the model represented by Eq. 7 and the information 
provided by the different descriptors, we obtained fragments 
with favourable (positive) influence to develop MAO-A 
activity as well as fragments with undesirable (negative) 
contribution to this activity. These are sensitive to small 
structural variations in the molecules and, for this reason, 
they can be very useful in the identification process (or 
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design) of MAO-A compounds by the inhibition of one or 
several biological receptors. 

 Calculation of the fragment contributions provides useful 

information about the molecular patterns that can be 
determinant for the development of MAO-A activity as a 

consequence of the binding of the compound with the 

biological receptor of each species. The most important 
aspect is that, with the knowledge of the desirable fragments 

for MAO-A activity, the molecule can be designed according 

to the interest of the analyst. Thus, when the fragment 
contributions are calculated, some fragments will have 

positive contributions to the MAO-A activity against several 

receptors. Then, new molecules designed from those 
fragments will theoretically cause the inhibition of several 

receptors. In this case, those new molecules would be 

interesting multi-target inhibitors. On the other hand, other 
fragments will have positive contributions to only one 

receptor. Thus, new molecules will be designed as MAO-A 

inhibitory agents but, taking into consideration one 
biological receptor, and for this reason, one mechanism of 

action. Another important element is that some fragments 

with positive contributions can be present in inactive 
molecules (e.g., the OH aliphatic groups, represented by the 

nROH descriptor). At the same time, some fragments with 

negative contributions can be present in active molecules 
(like the aromatic carbonyl groups, represented by the 

nArCO descriptor). Only the combination of the different 

fragments will determine if the molecule will effectively be 
active or inactive. 

 The contributions of the different fragments depend on 

the targets for which they were calculated. In this sense, a 
fragment will have different contributions depending on the 

species against which the contribution to the activity was 

calculated. This fact confirms our suggestion stated above 
concerning the sensitivity of the multi-target descriptors 

which were used to generate the model. 

 The sensibility of the multi-target descriptors can not 
only be found in the fragments but also at the molecular 

level. In this case, only the drugs included in this study for 

each one of the species are shown. The probability of good 
classification generated by Eq. 7 was considered.  

 The aim of our work was to develop a unified multi-

target (multi-species) QSAR model based on substructural-
topological and fragment descriptors. This investigation not 

only focused on the search and prediction of the MAO-A 

inhibitor compounds but also on demonstrating that is 
possible, at the same time, and with the use of one model, to 

predict possible mechanisms of action. Therefore, in this 

study we have synthesized some nitro and bromo 
oxoisoaporphine derivatives and investigated the inhibitory 

activity against hMAO. 

 The designed compounds were evaluated by the QSAR 
model. We used the multi-target QSAR methodology 

reported in reference 99 to calculate multi-target descriptors 

from spectral moments of the bond adjacency matrix, taking 
into account that this methodology can be applied to almost 

all classes of descriptors. In this specific case, we gave the 

name, multi-species descriptors, to those descriptors used for 

the prediction of MAO-A inhibitory activity through the 

inhibition of the enzyme in different species. 

 We selected 13 oxoisoaporphine derivatives with 

different levels of structural complexity. Nine of them were 

determined to be active and one, inactive. The 13 selected 
compounds were prepared and evaluated in vitro as potential 

hMAO-A inhibitors. The theoretical prediction was 

compared with the experimental results and the model 
correctly predicted eight compounds with only two mistakes 

on compounds with activities above and below the cutoff 

point established for the model (IC50 = 25 μM). Most of the 
tested compounds inhibited hMAO-A isoform activity in the 

micro and nanomolar range. The theoretical model is able to 

predict the MAO-A activity of the oxoisoaporphine 
derivatives with 84.6% certainty. This information matches 

the predictive capacity of the model which was 83.4 %.  

 We studied our MAO-A inhibitors against four species 
(or organisms: Bos taurus, Mus musculus, Rattus norvegicus, 

or Homo sapiens) of MAO. Only a few compounds were 

reported against that species. This fact is applicable to any 
enzyme in any species. For this reason, the database would 

be limited, essentially considering analogue compounds. 

This fact is almost the same for all of the organisms reported 
and characterized as MAO-A inhibitors. As a consequence, 

the specialist in QSAR/drug design methodologies will need 

to develop as many QSAR models as combinations of 
families of compounds versus species necessary to be 

predicted. In this sense, the development of one single 

unified mathematical model explaining the MAO-A 
inhibitory activity of structurally heterogeneous series of 

compounds through the inhibition of those compounds 

against several species in MAO-A inhibitory activity is a 
topic of major interest. 

 It was, therefore, necessary to select a training data set of 

MAO-A inhibitors extracted from international databases 
(www.ebi.ac.uk/chembl/) [72]; these include benzamide 

(moclobemide analogues), coumarin, diazoheterocyclic 

derivatives, indole, phenylethylamine, thioxanthene, 
oxadiazolidone, propargyl (clorgyline analogues), and other 

families of compounds (Fig. (1)). 

 The training set was formed by 1,725 cases (76.8% of the 
total data), with 443 compounds considered as active 

compounds. The external prediction set was composed by 

521 compounds (23.2% of the total data), with 147 
compounds being active. This series was composed at 

random of the most representative families of MAO-A 

inhibitors. Compounds with IC50  25 μM were considered 
active and those with IC50 > 25 μM were considered inactive. 

It is common for compounds with even higher IC50 values to 

be considered as active or moderately active but we 
considered 25 μM to be a reasonable limit. The selection of 

higher break point values to cluster chemicals by their 

MAO-A IC50 may generate a series with a clearly 
disproportionate size and, therefore, a vastly reduced number 

of active compounds. As reported in different sources, 

numerous IC50 values lie within a range rather than a single 
value.  
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Fig. (1). General structures of the data base MAO-A inhibitory compounds. 

 

 According to the statistical indices, the model has an 
appropriate quality. The sensitivity of the model was 83.5% 
and the specificity was 84.9 % in the training series, with an 
accuracy of 84.5 %. We examined all of the compounds, 
searching misclassified cases because they can be outliers 
and they may influence the quality of a model. We checked 
the Mahalanobis distance of each molecule respecting the 
two centroids of both groups (active and inactive 
compounds). Generally, in the case of abnormal values, the 
compound should be excluded of the model. In this sense, no 
outliers were detected. 

 In order to validate our model, we considered the 
sensitivity, the specificity, and the accuracy (all statistical 
indices in the prediction series). The sensitivity of the model 
in the prediction series was 84.4% and the specificity was 
83.2%, with an accuracy of 83.5% which means that, if the 
QSAR model predicts that a compound is active against a 

species, the probability of this compound to be really active 
is 84.4%. Similarly, if the model predicts that the compound 
is inactive against a species, the probability of the compound 
to be really inactive is 83.2% (Table 1).  

 In this study we have synthesized some nitro and  
bromo oxoisoaporphine derivatives and investigated  
the inhibitory activity against hMAO of 2,3-dihydro- 
7H-dibenzo[de,h]quinolin-7-one (dihydrooxoisoaporphine, 
C), 7H-dibenzo[de,h]quinolin-7-one (oxoisoaporphine, D), 
2,3,8,9,10,11-hexahydrooxoisoaporphine (hexahydrooxoiso-
aporphine, E), and 7-hydroxy-1,2,3,11b-tetrahydro-7H-
dibenzo[de,h]quinoline (isoaporphine, F) derivatives (Fig. 2). 

 From a total of 13 compounds, nine were predicted to be 
active in the in silico evaluation carried out using the QSAR 
model developed here. As previously mentioned, compounds 
were considered active when they had an IC50 value below 
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Table 1. Training and Validation Results 

 Percent MAO-A Inhibitors Inactive Total 

Training results 

MAO-A inhibitors 83.5 370 73 443 

Inactive 84.9 194 1088 1282 

Total 84.5 564 1161 1725 

Validation results 

MAO-A inhibitors 84.4 124 23 147 

Inactive 83.2 63 311 374 

Total 83.5 187 334 521 

 

 

 
 

Fig. (2). General chemical structure of aporphine (A), oxoaporphine (B), 2,3-dihydro-oxoisoaporphine (C), oxoisoaporphine (D), 

2,3,8,9,10,11-hexahydrooxoisoaporphine (E) and isoaporphine (F). 

 

25 μM. Ten of the studied compounds were efficient and 
highly selective inhibitors of the hMAO-A isoform activity 
in the micromolar and nanomolar range. From these series, 
an oxoisoaporphine with a D structure was the most potent 
inhibitor experimentally identified (IC50 = 0.83 nM). This 
data was corroborated by the model (Eq. 7). The inhibition 
of the MAO-A by this compound, due to the existence of the 
reversible inhibition, consequently produces an inhibition by 
a non-competitive mechanism.  

 Two compounds with the only differences being a 
methoxy group in R5 and the aromatization of the A had IC50 

values of 0.72 μM and 0.83 nM, respectively. This 
corresponds with the positive contribution of this group 
represented by the descriptor nArOR in Eq. 7. Moreover, 
additional substituents attached to the quinoline framework 
in the oxoisoaporphine derivatives clearly affected the 
inhibitory activity of the compounds studied on hMAO-A. 
Thus, the demethoxylation of the most active compound 
considerably diminished MAO-A inhibition in both the C 
and D structure patterns. Also, the presence of electron-
withdrawing groups such as bromine or nitro decreased the 
MAO-A inhibitory activity. This fact proves the importance 
of the molecular size of those groups (negative influence of 
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the descriptors, AVGμ8(Ato) and μ15(Ato)). Other electron-
withdrawing groups had an inverse contribution, that is, a 
positive contribution. Therefore, small chemical 
modifications on the oxoisoaporphine skeleton could give 
important information concerning the key points for the 
design of selective and highly effective inhibitors of the 
hMAO-A isoform. 

 The results obtained in this study indicate that these 
derivatives may have interesting therapeutic potential as 
original chemical models for the design and subsequent 
development of new drugs (selective and efficient MAO-A 
inhibitors) useful for improving the pharmacological 
treatment of depression (major depressive disorders). In this 
sense, these results were recently presented as a Spanish 
Patent [107] due to the novel and surprising pharmacological 
data for this type of alkaloid. 

ROC Curve 

 Although the sensitivity and the specificity can better 
describe the quality of a model, these two statistical indices 
have disadvantages. The most important is that they cannot 
provide information about how many times the probabilities 
indicate that a compound, observation, or case will be 
predicted more to be positive (active) rather than negative 
(inactive). This element is very important because it 
confirms, together with the positive predictive value, if a 
given case is active. This information is provided through the 
receiver–operating characteristic (ROC) analysis. ROC is a 
classic methodology from signal detection theory [108, 109]. 

 The ROC curve is created by plotting the true-positive 
rate against false-positive rate, or sensitivity against (1  
specificity). The ROC curve going along the diagonal from 
bottom left to upper right represents pure-chance 
performance. When the variable (or variables) under study 
cannot distinguish between the two groups, i.e., when there 
is no difference between the two distributions, the area will 
be equal to 0.5 (the ROC curve will coincide with the 
diagonal) and the classifier is considered to be random. 
When there is a perfect separation of the values of the two 
groups, i.e., there is no overlapping of the distributions, the 
area under the ROC curve equals 1. The areas under the ROC 
curves were 0.92 and 0.91 for the training and prediction 
series, respectively. Thus, these areas can be interpreted in 
the following manner. In the case of the training series, the 
value of area 0.92 means that a randomly selected compound 
or case from the active group will have a larger value of 
probability than a randomly selected compound or case from 
the inactive group (92% of the time). A similar conclusion 
can be deduced from the value of the area under the ROC 
curve in the prediction series. This fact proves that our 
model is not a random classifier because the areas under the 
ROC curves are different and statistically significant from 
those obtained in random classifiers (area = 0.5). 

Correlation Among Independent Variables 

 When a model is developed, sometimes the independent 
variables appear to be highly correlated. This fact can be a 
consequence of the inherent properties of the used 
descriptors. That can be a disturbing factor which is 
frequently overlooked and can lead to instability of the 

model. The correlation coefficient between independent 
variables should not exceed the value of r = 0.7, with r being 
the Pearson correlation coefficient.  

CONCLUDING REMARKS 

 As we described in this review, in the last years many 
advances have been reported in the development of new 
MAO-A inhibitors. As the ideal drug candidate has not been 
attained, an intensive search for innovative and selective 
MAO inhibitors is still needed. This effort has considerably 
increased in recent years. Different research groups are 
working on the search for novel inhibitors of this enzyme. 
The results achieved in the design of new MAO-A inhibitors 
shows that the rational design approaches significant 
advances in this area.  

 In this work, a unified multi-target QSAR model for 
classification and prediction of MAO-A compounds through 
the inhibition against four species enzymes was obtained. 
Taking into account the inhibition of different enzymes by 
several compounds, our model has an appropriate statistical 
quality and provides a guide for the development of 
molecular patterns to be used in the design of MAO-A 
compounds. Our model has proved to be very useful for the 
design, search, and prediction of novel MAO-A drugs in a 
quantitative, rapid, and easy way, considering the inhibition 
of several enzymes and, for this reason, several mechanisms 
of action. In addition, the significance of these approaches is 
that a unified multi-target QSAR model for MAO inhibitors 
was able, for the first time, to correctly classify (84.6%) 
series of compounds with different structural patterns. This 
ability demonstrates that this is a general model. The 
methodology can be extended to other species and it can also 
be extended to the study of specificities of many phenomena. 
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